Nico M. TEMME®

RECENT PROBLEMS FROM UNIFORM ASYMPTOTIC ANALYSIS
OF INTEGRALS IN PARTICULAR IN CONNECTION
WITH TRICOMI'S ¥-FUNCTION

1. TricoMI’s U —FUNCTION

Tricomi [44, p. 56| introduced the ¥-function as the second solution of the
confluent hypergeometric differential equation (also called Kummer’s equation)
d’y dy
(1.1) zgz—2+(c—-z)d—z~—ay—0.
Tricomi denoted the first solution by ®(a, ¢; z), which in fact is a hypergeometric
function, given by

1.2 Alac)=3 @2
(‘ ) 1 1(G,C,Z)_Z<C)n—1—'lj!_’
n=0
with the usual condition ¢ # 0, -1, —2,.... 1Fi(a,c; z) is an entire function of z.

The symbol (a), is the shifted factorial (Pochhammer’s symbol)
(13)  (@n=T(@+n)/T(a)=ala+)(@+2)--(a+n-1), (ao=1.

It is not difficult to verify that z!=¢;Fi(a — c+ 1,2 — ¢;2) is also a solution
of (1.1).

Tricomi denoted the second solution of the Kummer equation (1.1) by
TU(a,c;z)V. Tt is defined as a linear combination of the two ; Fy —solutions:

” U(a,c;2) = 'f‘_(%(i—}_?—ljlﬂ(a’ ¢ 2)+
+ %)}—)zl‘clﬂ(a —c+1,2-¢2).

The Kummer equation (1.1) and the solutions ; Fi(a, ¢; z) and ¥((a,c; z), which

(*) CWI - P.O. Box 94079 - 1090 GB AMSTERDAM (The Netherlands).

(DGeveral notations for the Kummer functions are used in the literature; we prefer the
notation 1F1(a,c; z) for the first solution; in honor of Tricomi, we use ¥(a,¢; z) for the second
solution.
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are often called Kummer functions, arise in many problems of mathematical
physics.

A different introduction of equation (1.1) is based on a limiting method
applied to the Gauss hypergeometric function 2 F1(a, b5 ¢; z), which is a solution
of the differential equation

(1.5) 2(1-2)y" +c—(a+b+1)z]y —aby =0,

and which has the series representation

(1.6) oFi(a,b;¢;2) = i —(%ini)" 2", |zl < 1.

Yol

This equation has three regular singular points z = 0,z = 1,z = oco. The
Kummer functions arise when two of the regular singular points are allowed
to merge into one singular point. Formally this process runs as follows. The
function 2 Fy(a, b; c; z/b) has a regular singular point at z = b. Using the series
in (1.6) it can be verified that the limit

lim o Fy(a,b;c; z/b)
b—o0

exists, and equals the series in (1.2). It can also verified that in the same
limiting process the Gauss hypergeometric differential equation (1.5) transforms
into (1.1). This explains the name confluent hypergeometric functions for the
Kummer functions.

The basic integral representation reads

r 1
(17) 151 (a’ G Z) = 1-1( (C) 6Ztta_1(l — t)c_a—l dt,

a)l(c—a) Jo

where ®a > 0,®(c — a) > 0 The second solution can also be defined by an
integral

oo
(1.8) U(a;c;z) = I‘—(lcﬁ/o e™# e (1 4 t)emat gt
which is valid if ®a > 0, Rz > 0. The ¥—function Is, in general, not analytic at
the origin z = 0. The integral can be used for analytic continuation with respect
to z into the domain {|ph 2| < m, z # 0}, by turning the path of integration. If
a=0,-1,-2,..., ¥(a,¢;2) is a polynomial in z, f c—a — 1 = n (non-negative
integer), ¥(a, c; z) can be expressed as a polynomial in z multiplied with z‘"“"".
There are remarkable functional relations:

1F1(a,¢2) = 1 Fy(c— a,c; -z},

(1.9)
U(a,cz) =2""°V(a—c+1,2 - ¢;2).
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Contour integrals are given by

. —_— P(c) S .a—C —a
1F1(a,c,z)-—2-E-/Fe §97¢ (s —z)7%ds,
(1.10)
\Il(a’c;z) e _I‘_.(_c—_al/ essa—c (Z_S)._adsy
Ly

27
where, if z > 0, Lp is a vertical line in the half plane ®s > z, and Ly is a vertical
line that cuts the real axis between the origin and z. When z is complex, the
contours need to be modified appropriately. In order to speed up convergence,
the contours may be deformed into parabola shaped contours that terminate
at —oo. The contour integrals are more flexible in asymptotic analysis than the
standard integrals given in (1.7) and (1.8).

1.1. Special cases of the Kummer functions
There are many special cases. We mention the most important ones.

Error functions.

Exponential integrals.
Fresnel integrals.

Incomplete gamma functions.
Bessel functions.

Orthogonal polynomials.
Parabolic cylinder functions.
Coulomb Wave Functions.
Whittaker functions.

In fact, the Whittaker functions are a different notation of the confluent
hypergeometric functions. The relations are

1 1 ].
My u(z) =e 772274 Py (-2- + =k, 1+2u Z> ,
(1.11) A
W n(z) = e~ iyrtiy (5 +u—r, 1+ 2u; z) .
M, . (z) and W, ,(z) satisfy the Whittaker equation
Lo
1 kg H
" - - —

(1.12) W' | =gt A |w=0.

There is a vast literature on Kummer functions. The books [13], [34]
and [46] are exclusively devoted to the class of confluent hypergeometric func-
tions or Whittaker functions. Especially in the first book many references are
given to physical applications.
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2. ASYMPTOTIC EXPANSIONS OF LAPLACE-TYPE INTEGRALS

We mention a very useful result from the theory of asymptotics for Laplace

integrals, known as Watson’s Lemma.
Asuume that f is analytic inside a sector Q:a; < ph ¢ < g, where a; <0
and ap > 0 and that, as t — O+ inside Qs: a1 +6 <pht <az -4,

(2.1) Ft) ~ 271D Tant™, RA>0.
=0
and that the integral

(2.2) F(z) = /O " ft)etdt

is convergent for sufficiently large values of Rz. Then the integral (2.2), or its
analytic continuation, has the asymptotic expansion

0 an
(2.3) F(z)NZI‘(nH)m, z— 00,

n=0

(where 2™ has its principal value) inside the sector
1 1
(2.4) —a2—§1r+6_<_phz§—a1+§7r—6,

For a proof we refer to [27, p. 113]|, where more general conditions are
assumed; see also [47].

When applying Watson’s lemma in the theory of special functions, the
condition in (2.1) often holds, because the function f(t) is, up to the factor
t*~1, usually an analytic function in a domain containing [0, cc).

Recall the definition of the ¥—function in (1.8), where f(t) = t*~'(1 +
t)e=2~1. In this case f(t) is analytic in the sector |ph t| < 7, and we obtain

(2.5) U(a,c;2) ~ 27 Z @ﬁil—c—tﬂﬁ (=2)™", z—o00.
n=0 :

which holds for |ph z| < 37/2. By using the integral in (1.7) with a change of
variable t — 1 — t, that is,

I'(c)e® !
2.6 . — ztgc—a—=1(1 _ s\a-—1
(2.6) 1Fi(a, ¢ 2) T (c—a) /0 e*'t (1—=t)*tdt,
we obtain for the ; F; —function the result
‘ D(c)e* 227¢ XN (c—a)n(1 = a)y, o
(2.7) 1Fi(a,c;z) ~ o) nE=0 n! 27" z— 0,

which is valid in the sector |ph z| < i The limited domain of validity is due
to the singularity of the integrand in (2.6) at t = 1. To extend the domain we
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need a different integral. For example, we can replace the interval (0,1) in (2.6)
with two intervals (0,00) and (1,00), where the point at infinity can be chosen
above the the branch line (1,+400) or below, depending on the phase of z. The
result is

1 02 z ga-¢ (c—a)n(l=a)n _,
(2.8) He) e I(a) n=0 n! i
' etmia zme 2 (a)n(l+a—c) _
* Te—a) nzzo n! (=2)

where the upper sign is taken if ——71' < ph z < 27 and the lower sign if ——7r <
ph z < §7. The first part is dommant when Rz > 0 and corresponds with (2 7);
the second part becomes dominant when z enters the half plane Rz < 0.

2.1. A class of polynomials introduced by Tricomi

In [45] Tricomi introduced a class of polynomials. He used the polynomials
in convergent and asymptotic expansions. The definition can be given by using
Laguerre polynomials:

0 e =0 - S0 (F)

which, although closely related to the Laguerre polynomials, are essentially
different from them. For instance, the degree of l,,(z) is not n but the greatest
integer in %n. The first few polynomials are

b@=1 h@=0, b{@)=—-1z ls)=—3s k)=zgs’ -7z,

The polynomials show up in the generating function
o0
(2.10) e (1-2)*= Z In(z) 2", |z] <1.
n=0

This relation is easily verified by expanding both the exponential and binomial
function in the left-hand side, and by comparing the coefficients in the product
with (2.9). There is a simple recursion relation:

(2.11) (n+ Dlnt1(z) = nln(z) — zla-1(2), n=12,...,

which can be derived from the generating function.
Tricomi mentions two applications. First, for the ; F; —function there is

1 = .
’—‘C‘“ 1F1 (a, (oN x) = Z ln(_a) z™ ’]c+n—1 (—a:c),



— 188 —

where

) = (2VE) = Zm—(l)ﬁm

which is an entire function of z. For the incomplete gamma function there is
an asymptotic expansion:

oo
(o +1,z) ~ —e %zt Z nlin(a) (@ —z)™" 1,
n=0

as ¢ = /T — & /o — oo, within the sector —37/4 < ph(¢) < 37 /4.

Also [2], [3], [4] and [33] used the polynomials in asymptotic problems.
In [36] and [37] we used the polynomials for obtaining uniform asymptotic
expansions of Laplace integrals. In Section 4 we consider a generalization of
the Tricomi polynomials.

We explain how the polynomials defined in (2.9) can be used in uniform ex-
pansions of Laplace integrals and apply the method to the Tricomi ¥'—function
and the | F; —function.

2.2. Uniform expansions of Laplace-type integrals

We consider the Laplace integral

1 o
2.12 F(z) = = / et f(t) dt,
(212) &)= 509 /. ()
where Rz > 0,8\ > 0 and z is a large parameter. We are interested in the case
that ) is large as well.
When A is restricted to a bounded set in the complex plane, an expansion

of F)(z) can be obtained by using Watson’s lemma. When we assume that f is
analytic at t = 0 we obtain:

(2.13) flt) = iant" = F\(z)~ i()\)n anz" "N,
n=0 n=0

as z — oo in the sector |ph z| < ir -6 < im.

The expansion (2.13) loses its asymptotic character when X is large. For

instance, if A = O(z), then the ratio of consecutive terms in the asymptotic
expansion satisfy

Qp41 n+ A _
Qp, z

O(1) if an#0.

In [36] we have modified Watson’s lemma to obtain an expansion in which large
as well small values of A are allowed. This expansion is obtained by expanding
fat t=p:= Xz, at which point the dominant part of the integrand of (2.12),
that is, t* e~ attains its maximal value (considering real parameters at the

¢t
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moment). We write

) =3 an(w)t-p",

n=0

and obtain by substituting this into (2.12) the formal result
(2.14) Zan YP,(\)z™" A, 2z — o0,

where

zn+A

(2.15) ) = S5y /0°° Plemat (4 yndh, =\

The functions P,()) are polynomials in A. From (2.15) the recursion
Pry1(X) = n[Pa(X) + APa-1(X)]

follows with initial values Py()) = 1,P(A\) = 0. An explicit formula follows
from expanding (t — )™ in (2.15), which gives

P = 3 (7) 00"

k=0

Comparing these properties with those of the Tricomi polynomials l,(z), we
find that

Po(\) =nll,(=)), n=01,2,....

The nature of the expansion (2.14) is discussed in {36] and [37]. Under rather
mild conditions on f it follows that the expansion (2.14) holds uniformly with
respect to A € [0,00), and in domains of the complex plane.

We can apply this method to Tricomi’s ¥ —function for the case that z — oo,
to obtain an alternative of (2.5). For the new expansion we write

) = Q4051 =S an()(t - )"

where
an(p) = <C - Z” 1) I+t and p=a/z.
This gives
o
(2.16) U(a,c;z) ~ Z an(p) Po(a) 2777, z— 00,
n=0

uniformly with respect to a € [0,00); ¢ should be of comparable size of a. We
need the condition ¢ — a = O(1).
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We see that for 4 — 0 the expansion reduces to (2.5); if . becomes large
the asymptotic convergence improves. If ¢ = a the expansion becomes rather

simple:

o qyn_ Pnla)
(2.17) Tla,a;2) ~ 2'~ Z—) —Z:_—a—m, z — 00,

which is an expansion for the exponential integral. This example and (2.16)
show quite well why large values of A = a are allowed: the degree of P,(a)
equals [n/2], and the effect of Py (a) is amply absorbed by the term (z+a)="-1,
Another feature is that (2.14) holds for A — oo, uniformly with respect to z,
say z > z9 > 0.

A similar method is available for 1 Fi(a,c; z) if we use the contour integral
n (1.10). We have

2t=ce*T'(c)

1F1(0,+1,C;Z) = 2

/ e® (1 4+ w)* T cw o dy,
c
Expanding

1+ w)a+1—c = ibn(u)(w — )" ba(p) = (a +7]; - C) (1+ 'u)a,+1—c—n7

n=0

where p = a/z, we obtain

Latl- cezl" C)
(2.18) 1Fila+1,¢2) ~ il Z ba ( ",
where
Qnla) = z 2letd) I:;(: +1) / e (w—p)"w * dw.
L

By expanding (w—pu)" it easily follows that Q,(a) = (=1)nP,(—-a). The expan-
sion in (2.18) can be viewed as an alternative for (2.7), and holds for z — oo,
uniformly with respect to a € [0,00), with ¢ — a = O(1).

3. UNIFORM ASYMPTOTIC EXPANSIONS IN TERMS OF BESSEL FUNCTIONS

Tricomi has derived several convergent expansions of the ; F} —function in
terms of Bessel functions that are useful for evaluating the function when the
parameters are large. For example, we have

(3.1) 1Fi(a,¢;2) = e¥*T(c)(rz) 10 /ZZ An(k,c/2) ( ) " Je—14n (2VE2Z) ,

n=0
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where k = ¢/2 — a and the A,(k,\) are coefficients in the generating function

(o]
e (1—2)""*(1+2)"* = Z An(8,0) 2"
n=0
The series in (3.1) is convergent in the entire z—plane. Moreover, it can be
used for the evaluation of 1F(a,c; z) for large x. For further details on these
expansions we refer to [46].

The expansion in (3.1) may be compared with an asymptotic expansion of
the Whittaker function M ,(z) (cf. (1.11)) as given in [27, p. 446]. Olver used
the differential equation to derive an expansion in terms of J-Bessel functions,
with the same argument 2v/kz as in (3.1), which is provided with error bounds
for the remainder in the expansion. Several other expansions are given by Olver,
also for the function Wy ,(z). In [26] an expansion for the Whittaker functions
is given in terms of parabolic cylinder functions; Dunster has developed in [17]
uniform expansions for the Whittaker functions in terms of Bessel functions
and Airy functions. All these approaches are based on differential equations;
they are valid for large domains of the complex parameters, and supplied with
error bounds. .

In [39] we have given an approach based on integral representations for ob-
taining a uniform asymptotic expansion in terms of the modified Bessel func-
tion K,(z), with an application to the U-function. The standard form for
deriving the expansion is the integral

(32) F)‘(z, a) = /ooo t)\~le—zt—a/tf(t) dt,

which reduces to a modified Bessel function in the case that f is a constant.
We have

(3.3) 2(Oz/z)’\/2K>‘(2\/a_z_) - /Ooo Plg—zt—alt g

The integral in (3.2) is considered with o, A > 0 and large positive values of z.
We have derived asymptotic expansions for F)(z,«) that hold uniformly with
respect to both o and X in the interval [0,00). To handle the transition of the
case a = 0 to o > 0, the modified Bessel function (3.3) is needed. Observe that
when a = 0 the essential singularity in the integrand of (3.2) disappears and
that (3.2) becomes a more familiar Laplace integral, that can be expanded by
using Watson’s lemma.
For the W-function we can derive the expansion

)
F(a)e—x/z\ll(a, ) =r 2ﬁ1_cK1_c(2ﬂa) Z asa” °+

s=0

(3.4) o0
+26%7¢ [Ky—c(2Ba) — K1-¢(28a)] D bsa™*,

5=0
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where 3 is given by
w -!—Sinhw -1 1
(3.5) 8= ——-0———2-————0, wp = cosh (1 + 53:/(1) .

The coefficients as, b follow from an integration by parts procedure, and the
expansion holds for a — oo, uniformly with respect to z € [0, 00). The asymp-
totic nature of the expansion is discussed in [39], where also an expansion is
considered in which ¢ is no longer a fixed parameter. )

4. THE TRICOMI-CARLITZ POLYNOMIALS

The Tricomi-Carlitz polynomials are defined by

(41) 49 = 3 07 >(7f?7l:‘57

k=0

The relation with the Laguerre polynomials reads:
(4.2) t(z) = (1" LF~*"(a),

and we observe that the class of polynomials {l/,(z)} introduced in Section 2
follows from the present set by putting o = 0. The new polynomials satisfy the
recurrence

(43)  (+ D@ -+ 0)P@) + 22 (e) =0, n>1,
with initial values £ (z) = 1, t{*)(z) = . A few other values are

e 1 «
(4.4) @)= §(a+a2—x), {9 (z) = 6(2a+3a +a® - 2z — 3za) .

[44] introduced the polynomials. Tricomi observed that {t{*(z)} is not a system
of orthogonal polynomials, the recurrence relations failing to have the required
form (cf. [35, p. 43]). However, Carlitz discovered ([14]) that if one sets

(4.5) fled(g) = 2™ t(e) (z)(z~?),
then {£{*)(z)} satisfies
(46)  (H+DADE) - +a)z SO0 + £ @) =0, n>1,

with initial values f{*(z) = 1, £ (z ) = az. A few other values are

a 1 9
1 )(x):§ [e(1 + @)z -1],

1
fzga) (z) = 87 (-2 + 2a2?% - 30 + 30222 + a3x2) .
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There is a generating function for £{* (z):

o0
(4‘7) ew/$+(1—az2)/22 In(l-zw) _ ZfT(La) (:l:)'w". ]'wfcl <1.

n=0
If z = 0 this reduces to
e~ 1w — Z f2(:)(0) wir
n=0
giving
(@9} = (1) 2= /n! (@) _ _
f2n( )_( 1) 2 /’I’L., f2n+1(0)'—0a n""071721~'--

Carlitz proved that for a > 0, {f{*)(z)} satisfies the orthogonality relation

2e®
(n+a)n! mn

s 7 55900 590) ) =

where 1(®) (z) is the step function whose jumps are

k k-1 ,—k
_(___l__q_)_l_L at T =X = 4 1 ,
k! vk +a

The values x; play a special role in the generating function because for these
z—values we have

(49) dp®(z) =

k=0,1,2,....

o0

e/ (1 — grw)* = > £ (z) w™,
n=0
and now the series converges for all values of w.

For further generalizations of the Tricomi-Carlitz polynomials we refer
to [14] and [16]; [15] gives a brief treatment of the polynomials #%)(z). Goh and
Wimp establish in [19] and [20] the asymptotic behavior of the Tricomi-Carlitz
polynomials and discuss their zero distribution. They observe that the polyno-
mials f,(z/+/a) have all zeros in the interval [-1,1]. They use in their second
paper a probabilistic approach for improving their earlier results concerning the
asymptotic distribution of the zeros of the polynomials f,(l“)(:r:). Saddle point
methods are used to study the asymptotics for fr(f‘) (z) in the complex plane.

In this section we describe a method how to obtain an asymptotic repre-
sentation of the Tricomi polynomials in terms of the Hermite polynomial. We
concentrate on large values of the parameter o and n = O(«a); for « we assume
—1/y/a < z < 1/y/a, the interval of the zeros. The distribution of the zeros
of ffl“)(x) can be obtained by using the zeros of the Hermite polynomials. The
role of the Hermite polynomials can be shown by observing that

(4.10) lim (o) <x 2) _ 9-n/2 b ().

a—o0 (6] TL'
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This follows from the generating function given in (4.7). Replacing z in the
left-hand side with 2v/2 /o yields, if @ — oo, exp(zv2 w + $w?). This is, up to
some scaling, the generating function of the Hermite polynomials, which reads

— o 2"
(4.11) e = ZO Ha(z) -

Although the Tricomi-Carlitz polynomials can be expressed in terms of the
Laguerre polynomials (see (4.2) and (4.5)) it is not possible to use existing
results on Laguerre polynomials from the literature to describe the asymptotics
of fr(f")(x); this is due to the peculiar role and position of the parameters n and
z in (4.2). In particular, the Tricomi-Carlitz polynomials £4%(z) do not satisfy
a differential equation. Hence, the powerful results obtained in [17], [18] and
[27] for the Whittaker functions cannot be used in the present case.

5. HERMITE-TYPE EXPANSIONS OF THE TRICOMI-CARLITZ POLYNOMIALS

We take the generating function (4.7) as starting point, and use the Cauchy-
type integral:

e 1 w —az?)/z? In(l-zw dw
(4.12) é)($)=% /c g/t (1-az?) /22 In(1-z )wn+l'

The contour C is a circle around the origin with radius less than 1/|z|,z # 0.

Our approach for the Tricomi-Carlitz polynomials is earlier discussed in [38].
We summarize the main steps of this publication. In [22] a similar approach
is used for Meixner polynomials; also in this case a differential equation is not
available. The same problem occurs for the Charlier and Pollaczek polynomials,
which are considered in [9] and [10], respectively, and for which Airy functions
and Bessel functions are used as main approximants. For more details on these
publication we refer to Section 5.

Rescaling the parameters in (4.12) by writing

r=¢/Va, n=ve, w=s/a

we obtain
_ /2
(4.13) ) = T [0 &,
2mi Jo s
where
_ g2
(4.14) oe)= 5+ -g—f- In(1—£s) - vIns.

The saddle points are given by

(4.15) s, = AN EVOV T4y

2
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It
_ v <é< 2v
Vvv+1 Vv+1

the saddle points are complex, and for these values of ¢ the zeros of f{* (z)
occur. In that case the saddle point are located on the circle with radius /v .

Comparing the behavior of the saddle points of the integral in (4.13) we
observe that the situation is quite analogous to the behavior of the saddle
points for various values of z and n of the Cauchy-type integral that defines the
Hermite polynomials, viz.

dw
wntl ’

n!

(4.16) Hy(z) = 2= /C JEea—

27

which follows from (4.11). Due to this analogy, the integral in (4.13) can be
approximated in terms of Hermite polynomials.

Before giving a few details on the saddle point analysis we give a first result.
If n < o the complex saddle points given in (4.15) are close to the origin. For
small values of s the phase function ¢(s) can be approximated by

$o(s) =&s— -;- (1-¢% s2—vins.

Substituting this into (4.13) and using (4.16) we obtain for |¢//a| < 1 the
approximation

@ _ [(1—az? 2 az (@)
(4.17) AY (:c)——(———2—-——-> - Hp —2(\/—1—:—;—;)— +e(2)|

where we expect that (™ (z)| is small if o > n. Observe that the limit in (4.14)
follows from (4.17) if indeed limy_,e0 &5 () = 0.

Computing the zeros of fi*(z) for n = 10,a = 50 with the help of (4.17)
and the zeros of Hyp(z) gives a maximal absolute error of 0.0054 for the zeros
of £ () and a relative error of about 5%.

To obtain an optimal approximation we first use a different scaling of the
parameters for (4.12). This time we introduce the parameters £, v, s by writing

1 1 1 1
(4.18) z=E£/ a=z, n+§—u(a——2—), w=sfa-g3,
which yields
— 1\-n/2 ds
( () (g) = (2= 3) / (a-pote) __ds
(4.19) () 5 ; e T

where ¢(s) is given in (4.14) and the saddle points in (4.15) (now with different



¢ and v as given in (4.18))?). Next we substitute
(4.20) B(s) =¢(t)+ 4,
which in fact is a conformal mapping of the s-plane to the t-plane, where
+ 1 2
U(t) =2nt —vint — 5t

The quantities A and 7 follow from the condition that the saddle points in the
s—plane correspond to the saddle points

(4.21) ta=n*Vn*—v

in the t-plane. Using the transformation (4.20), we obtain from (4.19) the

representation

1 —n/2 (a—%)A 1 dt
wy _ (@ 3) ¢ el D) ¥ f(p) —
R R &
c
where

(4.23) ft) = \/T%f_?)— % .

Evaluating the equation (1) — ¢(t2) = ¢(s1) — ¢#(s2), which defines the
quantity 7, we obtain

vW
2n\v —n? 4+ 2v arcsin—n; =—

o4 Vv 3
) — 2l —& arcsin —ﬂ + 2v arcsin M .
£ 2\/1-¢2 2/

where W = 4v — €(v + 1)?. The relation in (4.24) holds for —2/v /(v + 1) <
€ < 2yv/(v + 1); the corresponding n—interval is [~/v, /7 ].
Replacing the function f(t) in (4.22) with a constant ¢y, we obtain,

-n/2

(4.25) FE () = gpele—2)4 2 ] [Hn (ﬂm> + el (1)] .

In Table 4.1 we give the zeros z;, of f,(f") (z) for n = 10, = 50 and compare the
zeros with approximations z¢ obtained from this asymptotic formula. That is,
let (for k =1,2,...,10) hy be the zeros of Hio(z). Define ny = hy/v2a -1,
and invert the relation in (4.24) to obtain &;. Then the approximations of the

zeros are given by zf = & /4/a — % We observe that the approximations for

(This choice of the phase function, which leaves the term 1 //s(1 — £s) as part of the
integrand, is not very obvious; also, the role of the large parameter v — % instead of « is not
obvious. We refer to [43] for more details on this point.
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these values of n and « are quite satisfactory; at least 5 significant decimal
digits can be obtained in this way.

TABLE 4.1. - Comparing the zeros of f,(f‘)(a:) for n = 10, = 50 with approzimations
based on the zeros of Hp(x). We show zk,k =1,2,...,10 (the zeros offfgo)(z)) with their
approzimations x, and the absolute and relative errors.

k Tk g abs. error rel. error
1 —0.0855233907 —0.0855230252 0.36x 107° 0.42 x 107°
2 —0.0650754635 —0.0650753259 0.13x107° 0.21x 107°
3 —0.0460298897 —0.0460298453 0.44 x 1077 0.96 x 107¢
4 —0.0274857009 —0.0274856920 0.80 x 10~8 0.32x 107¢
5 —0.0091433976 —0.0091433973 0.32x107° 0.35x 10~7
6 0.0091433976 0.0091433973 0.32x107° 0.35%x 1077
7 0.0274857009 0.0274856920 0.89 x 1078 0.32x 107°
8 0.0460298897 0.0460298454 0.44 x 1077 0.96 x 10~¢
9 0.0650754635 0.0650753259 0.13x107° 0.21x 107°
10 0.0855233907 0.0855230252 0.36 x 1076 0.42x 107°

Furhter details on the Hermite-type approximation of the Tricomi-Carlitz
polynomials will be given in [43].

6. OTHER RECENT RESULTS ON UNIFORM EXPANSIONS OF INTEGRALS

In this paper we have concentrated on results for functions related to the
Tricomi ¥-function. This function is also an important topic in the recent in-
terest in the Stokes phenomenon. In this section we mention a few aspects of
the Stokes phenomenon; in particular we discuss shortly Olver’s work on the
¥ —function in connection with this topic. There are several other recent publi-
cations in which uniform asymptotic expansions are derived by using integrals;
we mention a series of papers by Wong and co-workers on certain orthogonal
polynomials.

5.1. Ezxpansions in connection with the Stokes phenomenon

In [5] Berry gave the Stokes phenomenon a new interpretation. This phe-
nomenon is related with the different asymptotic expansions a function may
have in certain sectors in the complex plane, and with the changing of con-
stants multiplying asymptotic series when the complex variable crosses certain
lines (also called Stokes lines). Berry explained that the constants arc in fact
rapidly changing smooth Muctions, which can be approximated in terms of
the error function. His approach was followed by a scries of papers by himsclf
and other writers. At the sanme time interest arose in ecarlier work by Stielt-
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jes, Airey and Dingle to re-expand remainders in asympto.tic expa.nsiqns ajnd
to improve the accuracy obtainable from asymptotic expansions by considering
exponentially small terms. .

The Stokes phenomenon and the topic of exponentially a,symptotlcs.are c':on-
nected with uniform expansions of integrals, in particular, with approximations
which are uniformly valid with respect to variations in the phase of the large
parameter. We mention the contributions on a better understanding of the
asymptotics of the gamma function by [6], [12] and [31]. Morfla general papers
are [7], [8] and [21]. For applications to the U-function we mention [24] and [25].
In [11] new results for the modified K-Bessel function have been given. In [23]
a method has been devised for estimating the optimal remainder in an asymp-
totic approximation which is uniform with respect to variations in the phase
of the large parameter. In [28] and [29] interesting results for Tricomi’s -
function have been derived; see also [30]. An introductory paper on the Stokes
phenomenon and exponential asymptotics is [32].

5.2. Orthogonal polynomials
In a series of papers, Wong and his co-workers have derived uniform asymp-
totic approximations for orthogonal polynomials that do not satisfy a differ-
ential equation, and for which integral methods are used. In these papers
conformal mappings have been used that are of the same kind as the one given
in (4.20) and in [38].
[1] In [22] the Meixner polynomials have been considered, which can be defined
by the generating function

(5.1) (l - %)m (1-w) P = 1; my(z; B, c)(-:):—: .

There is a relation with the Gauss hypergeometric function:
(23 8,¢) = (B)n 2F1(—n, —; 5;1 — 1/c) .

Two infinite asymptotic expansions are derived for mn (ne; 4, ¢). One holds
uniformly for 0 < e < a <1+ a, and the other holds uniformly for 1 -6 <
a < M < oo, where a and b are two small positive quantitics. The main
approximants are parabolic cylinder functions, which are in fact Hermite
polynomials.

2] [9] gives expansions for Charlier polynomials, which follow from the gener-
ating function

(5.2) e (14 w)® = i Cl (z) Z—T, lw| < 1.

n=0
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There is a relation with the Laguerre polynomials and the Tricomi-Carlitz
polynomials, because the Charlier polynomials can be written as

(5.3) C@)(z) = n! L™ (a).

[4]

[5]

(cf. (4.2) and (4.5)). An infinite asymptotic expansion is derived for C{ (nf),
as n — oo, which holds uniformly for 0 < & < 8 < M < oo. The results are in
terms of the J—Bessel function. Considering a as the large parameter gives
an asymptotic problem as treated in the previous section, with approxima-
tions in terms of Hermite polynomials.

[10] treats the Pollaczek polynomials, which are defined by the generating
function

3 ) o0
(1- wew)_l/%zh(e) (1- we“w)_l/z—m(e) = Z P, (z;a,b)w™,
n=0

where

__acosf+b

h(e)——zsﬁle—-, a>+b.

An asymptotic expansion is derived for P, (cos(t/y/n);a,b), asn — oo, which
holds uniformly for 0 < € <t < M < oo. The results are in terms of Airy
functions. A discussion on approximations of the zeros of P,(cos(t/v/n); a,b)
is included.

In [42] incomplete gamma functions are considered for negative values of the
parameters; the results can be used for complex values also, and complement
earlier results that concentrate on positive values of the parameters, again
with extension to complex values.

[40] gives a selection of recent problems in connection with uniform asymp-
totic methods for integrals.

REFERENCES

[1] R. ASKEY - M.E.H. ISMAIL, Recurrence relations, continued fractions, and orthogonal

polynomials, Mem. Amer. Math. Soc., 300, 1984, 47-68.

[2] L. BERG, Uber eine spezielle Folge von Polynomen, Math. Nachr., 20, 1959, 152-158.
[3] L. BERG, Uber gewisse Polynomen von Tricomi, Math. Nachr., 24, 1962, 75.
[4] L. BERG, Uber Abschditzung des Restgliedes in der asymptotischen Entwicklung des

Ilzponential-integrals, Computing, 18, 1977, 361-363.

[7) M.V. BERRY, Uniform asymptotic smoothing of Stokes’ discontinuities, Proc. R. Soc.

Lond., Ser. A, 422, 1989, 7-21.

[6] M.V. BERRY, Infinitely many Stokes smoothings in the gamma function, Proc. R. Soc.

Lond., Ser. A, 434, 1991, 465-472.



— 200 —

[7] M.V. BERRY - C.J. HowLs, Hyperasymptotics for integrals with saddles, Proc. R. Soc.
Lond., Ser. A, 434, 1991, 657-675.

[8] M.V. BErRRY - C.J. HowLs, Querlapping Stokes smoothings: Survival of the error
function and canonical catastrophe integrals, Proc. R. Soc. Lond., Ser. A, 444, 1994,
201-216.

[9] Bo Rul - R. WoNG, Uniform asymptotic expansion of Charlier polynomials, Methods
Appl. Anal,, 1, 1994, 294-313.

[10] Bo Rui - R. WoNG, Asymptotic behavior of the Pollaczek polynomials and their zeros,
Stud. Appl. Math., 96, 1996, 307-338.

(11] W.G.C. BoYD, Stieltjes iransforms and the Stokes phenomenon, Proc. R. Soc. Lond.,
Ser. A, 429, 1990, 227-246.

[12] W.G.C. BoyD, Gamma function asymptotics by an extension of the method of steepest
descents, Proc. R. Soc. Lond., Ser. A, 447, 1994, 609-630.

[13] H. BucHHOLZ, The confluent hypergeometric function, Springer-Verlag, Berlin 1969.

[14] L. CARLITZ, On some polynomials of Tricomi, Boll. Un. Mat. Ital., 13, 1958, 58-64.

[15] T.S. CHIHARA, An introduction to orthogonal polynomials, Gordon and Breach, New
York 1978.

[16] T.S. CHiHARA - M.E.H. IsmaAlL, Orthogonal polynomials suggested by a queuing model,
Adv. Appl. Math., 3, 1982, 441-462.

[17] T.M. DUNSTER, Uniform asymptotic expansions for Whittaker’s confluent hypergeo-
metric functions, SIAM J. Math. Anal., 20, 1989, 744-760.

[18] T.M. DUNSTER, Uniform asymptotic solutions of second-order linear differential equa-
tions having a double pole with complez exponent and a coalescing turning point, SIAM
J. Math. Anal., 21, 1990, 1594-1618.

[19] W.M.Y. GoH - J. WimP, On the asymptotics of the Tricomi-Carlitz polynomials and
their zero distributions (I), SIAM J. Math. Anal., 25, 1997, 420-428.

[20] W.M.Y. GoH - J. WiMP, The zero distribution of the Tricomi-Carlitz polynomials,
Computers Math. Applic., 33, 1997, 119-127.

[21] C.J. HowLs, Hyperasymptotics for integrals with finite endpoints, Proc. R. Soc. Lond.,
Ser. A, 439, 1992, 373-396.

[22] X.-S. JIN - R. WONG, Uniform asymptotic ezpansions for Meizner polynomials, Man-
uscript, Constructive Approximation, 33, 1997, 119-127.

[23] D.S. JonEgs, Uniform asymptotic remainders, In: Asymptotics and Computational
Analysis (R. Wong , ed.), Marcel Dekker, New York 1990, 241-264.

[24] A.B. OLDE DAALHUIS, Hyperasymptotic ezpansions of confluent hypergeometric Sfunc-
tions, IMA J. Appl. Math., 49, 1992, 203-216.

[25] A.B. OLDE DAALHUIS, Hyperasymptotics and the Stokes’ phenomenon, Proc. R. Soc.
Edinb., Sect. A, 123, 1993, 731-743.

[26] F.W.J. OLVER, Whittaker functions with both parameters large: Uniform approzima-
tions in terms of parabolic cylinder functions, Proc. Roy. Soc. Edinburgh, Sect. A, 86,
1980, 213-234.

[27) F.W.J. OLVER, Asymptotics and Special Functions, Academic Press, New York 1974.
Reprinted in 1997 by A.K. Peters.

(28] F.W.J. OLVER, Uniform, ezponentially improved, asymptotic expansions for the gen-
eralized exponential integral, SIAM J. Math. Anal., 22, 1991, 1460-1474.

(29] F.W.J. OLVER, Uniform, ezponentially tmproved, asymptotic ezpansions for the con-

fluent hypergeometric function and other integral transforms, SIAM J. Math. Anal., 22,
1991, 1475-1489.



[30]

31
[32)
33)
[34]
[35)
136)
37
138)

39]

0]
1]
42
43
44
j45)

(46]
(47]

— 201 —

"W.J. OLVER, The generalized ezponential integral, In: Approzimation and Com-
putation: A Festschrift in Honor of Walter Gautschi (R.V.M. Zahar, ed.), ISNM ,119,
Birkhaiiser, 1994, 497-510.

R.B. PARIS - A.D. WooD, Ezponentially-improved asymptotics for the gamma func-
tion, J. Comp. Appl. Math., 41, 1992, 135-143.

R.B. PARIS - A.D. WoOD, Stokes phenomenon demystified, IMA Bulletin, 31/1-2, 1995,
21-28.

E. RIEKSTINS, The method of Stieltjes for error bounds of the remainder in asymptotic
ezpansions (in Russian), Akademiya Nauk Latviiskoi SSR, Institut Fiziki, Lafi - 052, 1982.
L.J. SLATER, Confluent hypergeometric functions, Cambridge University Press, London-
New York 1960.

G. SzEGO, Orthogonal polynomials, 4th edition, Amer. Math. Soc. Collog. Publ., 23,
Providence, R.I. 1975.

N.M. TEMME, Uniform asymptotic expansions of Laplace integrals, Analysis, 3, 1983,
221-249.

N.M. TEMME, Laplace integrals: Transformation to standard form and uniform asymp-
totic expansion, Quart. Appl. Math., 43, 1985, 103-123.

N.M. TEMME, Laguerre polynomials: Asymptotics for large degree, CWI Report AM-
R8610, Amsterdam 1986.

N.M. TEMME, Uniform asymptotic ezpansions of a class of integrals in terms of mod-
ified Bessel functions, with application to confluent hypergeometric functions, SIAM J.
Math. Anal., 21, 1990, 241-261.

N.M. TEMME, Uniform asymptotic expansions of integrals: A selection of problems,
J. Comput. Appl. Math., 65, 1995, 395-417.

N.M. TEMME, Special functions: An introduction to the classical functions of mathe-
matical physics, Wiley, New York 1996.

N.M. TEMME, Uniform asymptotics for the incomplete gamma functions, starting from
negative values of the parameters, Methods and Applications in Analysis, 3, 1996, 335-344.
N.M. TEMME, Hermite-type asymptotic approzimations of Gegenbauer and Laguerre
polynomials, In preparation.

I.G. Tricoml, Equazioni differentiali, Torino 1948. English edition: Differential equa-
tions, Blackie & Son, Boston 1961.

F.G. TricoMml, A class of non-orthogonal polynomials related to those of Laguerre, J.
Analyse Math., 1, 1951, 209-231.

F.G. TricowMl, Funzioni ipergeometriche confluenti, Edizione Cremonese, Roma 1954.
R. WonNg, Asymptotic approzimations of integrals, Academic Press, New York 1989.



